Project files: High current regulators

What is it?
These are high-current regulators designed for LM/LT108x-type regulators with current limits up to 5A or 7.5A dependent on the package. There are two versions, one with an on-board heat sink (as used to power the JLH1969 here) and the other without an onboard heat sink. The PCB with heat sink is intended for regulators in TO-220 packages. This will give you up to 5 amp current capability with an LM338 or a LM/LT1084 reglator IC. The PCB without heat sink is intended to use a TO-247 packaged regulator (LM/LT108xCP – up to 7.5A output current) and should be mounted on a suitable heat sink instead. Whether you use one or the other board version, remember to always calculate the heat dissipated in the regulator – if you are expecting to draw a couple of amps or more, the heat dissipation in the regulator quickly becomes quite large.
Also included is a small DC-DC regulator that fits on top of both regulator PCBs and can be used to generate an additional DC voltage from the main rail to power auxillary circuitry. Depending on the voltage differential and current draw, the AUXreg can use either a standard 78xx regulator or a switching type like the Traco TSR-1 or the Recom R78xx. The compact size means it can also be used as a “voltage thief” in many other places where you have a main DC supply but need a small extra DC voltage for a fan, a microcontroller or similar.

How big are the boards?

  • Regulator with heatsink (onboard-HS): 3.925″ x 20″ (app. 100×51 mm)
  • Regulator without heatsink (non-HS): 2.0″ x 2.0″ (app. 51×51 mm)
  • AUXreg: 0.4375″x2.0″ (app. 11x51mm)

What is the status of the boards?
The onboard-HS board is in v1.1. I built v1.0 and made some small adjustments subsequently, including moving the regulator footprint a little forward because it was too close to the heat sink and also tweaked the silkscreen a bit.
The AUXreg and the non-HS regulator are both in v1.0. I have built the AUXreg and it seems to work well as-is. I haven’t built the non-HS regulator but it is electrically identical to the onboard version it should be fine.

Does it use any special/expensive/hard-to-find parts?
Not really. The only potential exception is if your application requires a switching regulator for the AUXreg board – they can be a bit expensive.

Anything else I need to know?

  • The output voltage on the main regulator can be variable within a certain interval. If R1 is 121R, R2 will set the minimum output voltage (use my spreadsheet to calculate) and using a 500R/1k trimpot for P1 will give app. a 5V/10V adjustment range on the output from the minimum voltage. Note that with R1 = 121R, then C3 should be at least 22uF.
  • For the small caps on the main regulator boards, I recommend types that are rated for a 105C operating temperature as these sit very close to the heat sink. A 105C rating will help improve the reliability and overall lifespan of the caps.
  • The on-board heat sink is a Fischer type SK68/50. It is possible to fit a 40mm fan to the slots on top for improved heat dissipation.
  • Mounting considerations: Mounting the regulator and the PCB to the SK68 heat sink requires a bit of manual support because the screws tend to “slip” sideways in the slots. Also, you’ll want to mount the C1 capacitor last as it obscures the access to the mounting screw for the regulator.
  • For the AUXreg: The cap values C1 and C2 should be 330nF and 100nF respectively (ceramic or film types) for an 78xx regulator. For a switching regulator normally only a small electrolytic is required at the C1 position, but please consult the datasheet for the specific regulator you are using to be sure.

Downloads:
Download design files here

Related information:
Note: Always read the “intro post” for additional important information about my designs.

Always read the manufacturer’s datasheets for regulators etc. to confirm component values are correct. Even for “generic” types there may be slight differences between each manufacturer’s recommendations.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: