Project files: ICEpower Linear PSU

What is it?
The project files for the linear ICEpower PSU board I showed here. The first version of this board concept was made around 10 years ago, but as I didn’t have any boards left over I updated the design and cleaned it up a bit in the process.
The basis of this is once again the GP-PSUs shown here and the same file that I also used in a triple-configuration here. I have simply added a single high-power rail with a rectifier, two main caps and the usual decoupling + discharge LED – absolutely nothing fancy 🙂

How big are the boards?
This is the “XL”-version for 35mm main caps and the board measures 4.4” x 3.45” (app. 112 x 88 mm.).

What is the status of the boards?
The design is called v2.0 as it is based on a previous idea. It’s been prototyped and I see no mechanical or electrical issues.

Does it use any special/expensive/hard-to-find parts?
Not really, unless you choose to go overboard with expensive boutique parts, such as premium capacitors and fast rectifiers for the low-voltage supply (which I kinda did…).

Anything else I need to know?

  • The board should work with the ICEpower 200AC/300AC and the 250A modules which require around a 50VDC Vp voltage. For the 500A and 1000A modules you might need to check and modify the board files to get enough high-voltage clearance for the higher supply voltages used (nominal 80VDC/120VDC respectively)
  • The high-power supply uses a pair of snap-in capacitors up to 35mm in diameter and a GBU-type rectifier (available up to 25A). The low-voltage supply uses 22mm snap-in or 18/16mm standard radial caps with 1N540x or similar rectifiers.
  • Due to the rectifier setup on the low voltage supply, it is possible to use it with both single (voltage-doubled) and dual AC connections. In that case you should connect the transformer to one side of the AC-connector and you need only fit the required pair of diodes (either DA/DB or DX/DY), although of course there is no harm in mounting both pairs.
  • If you have space, I would recommend that you run “dual-mono” with separate power supplies for each channel, mainly to ensure that there is a good amount of capacitance on the high-power rail. If, like me, you still want one box and avoid a true mono-block design, then the high-power rail can use separate windings on the same transformer and the low-voltage transformers can be separate or shared between the channels. The sharing can of course be done either as parallel-connected dual rectifiers or as separate voltage-doubled circuits with each board using one transformer winding (honestly not sure what would be better here 🙂 ).

Downloads:
Download design files here

Related information:
Note: Always read the “intro post” for additional important information about my designs.

Read the ICEpower module datasheets carefully as well (and, if you can get your hands on them, the Designer’s Manuals as well).

Note: For once, I do actually have some spare boards left as I only needed the pair and I had to order 10 pcs. As you can see, they are green, HASL-plated and made with 2 oz. copper. If you are interested in boards, drop me a line.

Advertisements

2 Responses to Project files: ICEpower Linear PSU

  1. Hello,
    I have 2 mono blocks from Acoustic Reality who employ the 500 asp modules.I would like to modify them (but i am not a technician…) what do you recommend me to do in order them to sound much much better?(These amps were purchased in 2006-7)
    I purchased from Omega Mikro an internal ribbons to replace the internal cables , but nothing was done…
    Thank you and best regards
    David

    • theslowdiyer says:

      Hi David,

      AR made several models, but if it’s the square box with a single 500ASP model inside then there are a couple of options. You can add an input buffer as long as it will run on the +/-12V low-voltage supply. You can also experiment with adding more capacitance to the +80V power supply rail. However, I can’t promise that these tweaks will do anything worthwhile to the sound because that’s really a personal preference. The last option is obviously to sell the amps and buy something else instead 🙂

      There are people that modify the modules themselves, but it’s definitely not something I recommend. Firstly because the schematic isn’t available and secondly because the board is four layers and it’s a bit easier to break something. The modules are very high power and even a small accident can have severe consequences.

      BR,

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: