The “Whammy” headphone amplifier…

Although I did my own version of the Pass/Colburn “Whammy” headphone amplifier before there were boards available for sale in the diyaudio store (and before it was officially called the Whammy), I have still considered getting an original all-in-one board as well.

The cost of shipping from the US originally deterred me enough to do my own version, but a couple of weeks ago a board popped up on diyaudio from a fellow hobbyist in Europe, so I was able to get one at a reasonable cost. Unlike the diyaudio board this one is green (which I massively approve of) and also 2mm thick and plated with gold (ENIG) so it looks and feels really great. Because the board was thicker than usual and I knew I had to mount it in a big case I decided to go “all out”, use tall caps and heatsinks and maybe experiment with turning up the current compared to normal (haven’t do that yet though).

The power supply is running at 20V courtesy of some 7×18-regulators and a pair of green LEDs. This limits my choice of opamps, more or less to either the original OPA2604 or the (now-discontinued) LME49860 which is supposed to be a 22V-tolerant LME49720. Not sure if that is true, but I did chose the latter and I have no complaints about the sound. I might try the OPA2604 at some point instead since I haven’t listened to that since the comparison was an OPA2134 – that’s been a while. The output FETs are the recommended 2SK2013/2SJ313 which I already had matched pairs of, but obviously plenty of other options available that are easier to source.

Just like my clone version this one worked immediately after being powered up, but that is probably more to Wayne’s credit than mine 🙂 I don’t have a case idea just yet, so for the moment it’s going in a box until I come up with a plan for what to do next – still sounds great though 😀

Advertisements

A parallel amplifier with the LM3886…

Gainclones or chipamps are a popular DIY-topic and I’ve done a couple of designs myself and assembled a few others as well. The only one of the “original” National semi amplifier IC’s that I haven’t really done anything with – and coincidentally the only one that’s still in production – is the LM3886.

But not any more, because I just finished a simple design with two LM3886s in parallel configuration. The circuit is built (mostly) according to the “PA100” design from the original National application note (AN-1192) and not the Jeff Rowland-derived PA150/BPA300 that has different configuration and of course a third IC per board.

The configuration with two parallel ICs gives full current output at +/-35V into 4 ohms where a single IC would otherwise be thermally limited, but of course the power is still modest. As I recently swapped my faithful Sonus Faber speakers for a set of Scansonic MB towers which have a fairly low impedance, that’s exactly what I needed though (not to mention that I had a 35V supply left over from another project 🙂 ). The two-chip configuration also means boards can be kept small (and cheap), and there’s still the option of using two boards per channel in bridge-mode to make a BPA200, although the supply voltage would have to be reduced – only the BPA300 will run at 35V rails in BTL-mode as well.

The boards worked first time on power-up and seem to be well-behaved (quick tests only though). I need to do a bit more testing and make some minor (mechanical) changes to the layout and then I’ll publish the project files 😀

Naim the clone…

Yes, sorry for that terrible headline 😉 One of the ebay-kits I mentioned I my last post is this one.

It’s (supposedly) a clone of the Naim NAC152XS preamp. Now, I’ve not spent a lot of time working out the circuit details (a bit of information available here), but apparently it consists of a simple gain stage and an active filter which also serves as a buffer (and a volume pot in between). It could well be that this is a somewhat bastardised version of the original Naim circuits, but that’s not terrible important for me.

Although part of what made this kit interesting to try was that Naim is one of those hifi-brands that have a distinct sound signature – and a loyal following because of that (some would undoubtedly claim that you definitely don’t buy Naim gear for the looks so it has to sound good… 😀 ). What really caught my eye was that it is a very simple discrete circuit and it is single-supply. Discrete is always fun and while single supply circuits do have some drawbacks (additional capacitors in the signal path etc.), they also have some advantages for DIY’ers. One large advantage is that the single supply rail is normally easier to make and certainly easier to transfer between boxes, so an external PSU suddenly becomes a more viable/desirable option – and that’s where this will go as well when I get that far.

My contribution to this project – apart from soldering all the parts in the right places – consisted of replacing the capacitors in the signal path with Nichicon ES bipolars which are a bit better suited to the job (and nice and green!), and then just matching the supplied transistors as good as I could to make two identical channels. I also supplied the four board-mounted RCA connectors which I had left over – and then immediately after soldering them in place I remembered I had actually put them aside for another project 😉

Now, as usual I don’t post detailed impressions of the sound quality (mainly because I don’t have any right now), but my initial impressions are definitely positive enough that I’ll go forward with finding a suitable enclosure for these boards because I think they deserve that 🙂

New PassDIY headphone amp…

One of the (few) PCB-projects that I have been able to spend time lately on is a version of a new PassDIY headphone amp developed by Wayne Colburn. I’ve been looking at this from when it was first posted (after all, most diy’ers watch with interest when Nelson and his gang are up to something new 🙂 ) When the design was finally released a few months ago and Wayne started offering boards I didn’t jump on it immediately though.

First off all there was a question of cost – paying $35 in shipping for $25 worth of PCB is a bit annoying although I probably would have survived that. Secondly, the “all-in-one” form factor has some very obvious benefits, but also some significant drawbacks to me. You’re generally tied to one particular chassis, one particular transformer, one specific potentiometer etc. and I wanted more flexibility.

So instead of getting a ready-made board I started thinking about making a more flexible version by splitting the board up into smaller sections – two mono amplifier channels and a separate supply board to which you need to add a separate volume control and a separate transformer. The design is simple and so there were no major issues and my protoype fortunately worked the first time.

As usual I have only done quick bench testing right now, but the design seems to be solid (no doubt more to the designer’s credit than mine 😀 ). There is no DC-offset worth mentioning although it spikes a little when you turn the power off, and even in a “birds nest” test setup with wires all over the place, the amp was completely silent. As far as I can see, the bias is spot on and stable as well.

Project files coming in a few weeks when I’ve had time to compile them 🙂 In the mean time, you can still get the original boards through the thread and the original Gerbers are there as well if you want to get your own boards made instead.

An ICEpower 50ASX amp – the easy way…

Some weeks ago a reader on the blog asked me some questions about various pre-made options for putting together a simple amplifier based on the ICEpower 50ASX2 module.

One of the options mentioned was to buy a case-kit for the module from Ghent Audio in China. I’ve seen pictures of these cases before and not only do they look quite good, they also come pre-drilled and silkscreened which for most DIY’ers is the hardest part of building stuff. I answered the questions as best I could without any hands-on experience to offer, but as I had an older black 50ASX-module left over I decided afterwards to get a case for myself and try them out.

After the usual waiting on shipping (which wasn’t actually that bad – app. 2.5 weeks), the case kit arrived. Everything is included, a power switch assembly, AC inlet, terminals etc and it seems to be decent quality all round. I didn’t buy the full cable kit, which would have made it even easier to assemble, but still it’s not too bad.

Putting together the basic kit with the module, feet, switch etc. ready for cabling only took around half an hour or so. If you look at the pictures I’ve made a few “adjustments” to the kit by using stainless screws and feet (the kit comes with black screws and matte silver feet), but otherwise it is as delivered and of course using the original parts would also have been just fine. The terminals are decent quality, but not the best I’ve seen. Also, the terminal holes are drilled too large (presumably to accommodate changing suppliers) which is slightly annoying but by no means a deal-breaker.

A bit more digging in the parts drawers revealed some suitable pre-made cables for signal and speakers – and a problem: my stock of JST connectors for the power connections has run out (or run away :-))

So yes, in conclusion this is definitely an easy way to build an amplifier (just as long as you ensure you get all the parts before you start 😉

Switched on?

Another project that’s been on hold for a very long time because I did not really need to finish it….

It’s a balanced two-in/two-out passive switch box which I intend to use partly to add an additional input to a spare amp, and partly to build a more comprehensive test setup for comparisons of sources and amps.

The signal switching is done via relays (see here for original post – oh how time flies!) and the power supply for the relays is an IRM power supply module as showed a few weeks ago. Switching of relays is done with latching button switches that I still need to wire up once the front panel is drilled and that’s about it really 😀

The relays are transistor controlled and 5V types, so while it is simple for now there is plenty of scope for adding functionality via an Arduino/ATtiny-based controller of some sort. The most obvious feature would be an IR remote control, but another thing I was originally thinking would be to add ABX-logic to try some blind testing. I sort of gave up on figuring that out, but if anyone knows how to build this in Arduino code give me a shout 🙂

Class D experiments…

There are many class D technologies on the market at the moment, but one of the ones I haven’t tried (until now at least) is the International Rectifier “IRAUD7”-amps (IRF has been acquired by Infinion).

Consisting of the IRS2092 driver IC and various purpose-built FETs (many of them two FETs in a single package suitable for half-bridge designs), this is by most accounts a good-sounding and scalable class D technology. It’s also one of the few technologies where you can actually have a go at your own PCB layout if you want to. The schematics are available in IRFs published reference designs (here and here) and although making good PCB layouts for high-power switching electronics isn’t easy, it is actually possible to do.

Of course, when something is so easily available it tends to get exploited. It wasn’t long after IR introduced the designs before the market was flooded with several cheap clones, some using their own PCB layouts and some using IRs own Gerber files which are also published on the website. I had my eyes on some small (credit-card sized) boards to try for a while as they were really cheap (do an ebay-search for “IRS2092” and you’ll see 🙂 ), but eventually spotted this “luxury” version (at least based on appearance and observed parts quality) and fell in.

This build is the “low power” version with the IRFI4019 FET, but there’s also higher-power version with the IRFI4020 FET. Since the seller I bought from made a mix-up in ordering I actually ended up having a pair of each version, but I wanted to start with the low-power version. Then I might go dual-mono on the high-power boards later on if the sound quality proves it worthwhile 😀

The PSU consists of a 200VA transformer and a cheap supply PCB with 45mF capacitance per rail – mostly because that was what I had in my parts drawers. I’ve tried to keep the mechanics as simple as possible since I consider this build an experiment, but having the amp and PSU on a mounting plate simply makes everything much easier so I decided to “splurge” a little anyway :). The front panel is blank until I decide how the amp is going to be used.

Even though the pictures show the amplifiers uncabled (which they still are), I did manage some sneak listening on the modules and I am looking forward getting these into my main system for a proper test 🙂

 

Minipre in a box…

A while ago I presented my “MiniPre”-project of a simple op-amp based preamplifier. Now I’ve had occasion to put it into use as a small standalone preamp/active monitor controller.

The design is very simple, so not much to be added there (whatever you need is probably already in the original post), but it’s basically a standard dual op-amp in non-inverting configuration.

The power supply will be in the form of a small DC-DC converter (a continuation of my previous experiments) so that I can feed the box from a single 5V supply and keep the case size down. Because of this I’ve managed to cram everything into the smallest available hifi2000 case, so it will fit nicely on a desk 🙂

The advantage of this simple design is the the selection of opamp tends to have a noticeable influence on the sound signature, so this is one place where there is room to experiment whether different options have better synergy than others.

Delayed delay…

Was going to post something else today, but as I managed to finish something that includes software (which happens very rarely) I had to show that instead 🙂

It’s a small delay-circuit, useable for amplifier muting etc. via external relays. Nothing new in that as such, but unlike many other such circuits this one is based around an Arduino-enabled ATTiny85 microcontroller. This means that in addition to basic mute-on-startup functonality there’s room for expansion as well, including connecting external sensors etc. to the board.

The (laughably) basic Arduino sketch that I have just made to do mute-on-startup and read a manual mute-switch for control is less than 1kB in size, so even with just 8kB of memory on the ATTiny there’s still quite a bit of room to add software-based features to suit any particular application.

In terms of hardware, the board includes FETs for driving the relays, a separate indicator LED attached to one if the pins on the ATTiny and also a 5V power supply. The board is wired so that the relays are driven from the raw input voltage with the FETs acting as level shifters. In the standard configuration there is two I/O-pins left for control purposes, but with a bit of hacking it’s easily possible to repurpose either the LED connection or one of the relay driver pins if required.

I have a few other ATTiny85-based projects where I have done the hardware ages ago, but now with a (modest) success under my belt I feel much more inclined to start developing software for those as well 😀

Surrounded – again!

This is an old project that I have resurrected now as I would like to get my surround-sound setup back into working order (not that I expect I’ll be using it that much, but still…)

It’s a 2+3 channel ICEpower ASX-based setup with 125ASXs in BTL-mode at the front and 50ASXBTLs for center and rear. The 2-channel amplifier very nearly identical to my previous 125ASX-based amplifier but it does have three USPs compared to that build:

  • Transformer-coupled (balanced) inputs using Lundahl LL1527 transformers.
  • Two switchable inputs so it can be connected to both a stereo source and a surround-processor simultaneously.
  • ”Audiophile” form factor (i.e. around 44 cm. wide and much larger than is really necessary 😀 )

The 3-channel amplifier also has Lundahls at the input but no input switching (for obvious reasons).

Many upmarket manufacturers use transformers on the inputs of ICEpower-based amps and Lundahl in Sweden make some of the best ones around. The LL1527 isn’t usually employed as an input transformer, but if I’m reading the specs correctly it’s actually fairly well-suited to the lowish input impedance of the ICEpower modules so it should work well. The alternative (which would also fit on my boards) is the LL1540 which is a purpose-built high impedance input transformer. And well, if all else fails the way that these are mounted would mean that I could probably develop an active circuit instead 🙂 (differential opamp-board anyone?)

Just like my as-yet-not-completed “Ring” amp project the front channel amp has switchable inputs so that it can be used in a combined stereo/surround setup. Switching after the respective volume controls make more sense to me, but of course I haven’t actually lived with it yet so let’s see if theory meets practice in this case 😀 This switching is relay-based and uses the balanced selector modules I posted about earlier – yes, sometimes those piles of leftover prototype PCBs come in very handy :D.

There isn’t actually a lot missing – mostly cabling – before this is done, but I hate cabling so it might take a while to do it anyway 😉