New toys…

As per my last post I am in the process of moving (a lot of) DIY stuff out of my apartment, so what I should definitely not do is buy more things. However, sometimes an offer comes up that you just have to jump on 🙂

This time it was a set of unused ICEpower 700ASC-modules which is one of the ICEpower models I have not yet tried. They came up on a local classified page last week where I just spotted them by accident. The price was reasonable and since this is the ASC-version of the 700 with a few extra useful features then they should be quite versatile in use.

For now though, they are going on the shelf while I look for a suitable project for them (and move them to the new house 😀 ).

Advertisements

Hypex UcD in progress…

It’s been quite some time since I have posted about a project that I have actually completed – and so I’m a little ashamed to say that this post won’t break that trend 🙂

It’s a class D power amplifier based on Hypex UcD400HG modules. As with many of my other projects, it started with a few leftover parts and some thoughts about what to make from them. In this case, it was the chassis and the “centrepiece” of the design, namely a gigantic 1000VA transformer. Trying to decide what to do with that lot soon led to some obvious choices:

  • It had to be class D because there was very little space for the actual amplifier and heat sinks once the transformer was installed 🙂
  • The “upstairs/downstairs” layout that I have mentioned before became a necessity to make use of the internal height of the chassis.
  • I wanted to reuse my PSU-boards because I already had spare PCBs, but they wouldn’t fit and so I had so make a smaller version.

I know Hypex has shifted to their newer N-Core technology and started building integrated modules with onboard SMPS, but the old UcD-modules still have a reputation as excellent amplifiers. The plan is to upgrade them with the Hypex HxR-regulators once I confirm that everything is working properly.

The “final problem” is how to provide heat sinking. I have my eyes on some pre-made heat sinks that should do the job, but they are from a supplier where I don’t normally order so costs are a bit higher than I would like. I might eventually break down just to get it over with, but in the mean time I have a couple of other options in mind as well 🙂

PeeCeeBees in a box…

Well, almost. At least the box is ready for the PeeCeeBees, even if they are not quite ready for it yet 😀

Apologies for the stupid puns, but I managed to (nearly) finish the chassis for the PeeCeeBee amplifier boards. The basis is a small ebay-sourced enclosure with side heatsinks, but I have replaced the rear panel and fitted the insides with custom mounting panels for the PSU and the transformer/softstart.

The “upstairs/downstairs” layout maximises internal space and is something I plan to reuse extensively on other projects (even if the cost of the custom panels from Schaeffer/FPX does begin to add up…)

Still to do is some transistor matching (bleh!) before I can finish and test the boards and I also need to order a new transformer – the one in the picture is the right size, but not quite the right voltage.

First Watt F4 (part 1)

I don’t normally build class A amps in the summer because my apartment gets really warm, but this time is an exception. Partly because this summer in Copenhagen has been much more “class A amp friendly” (i.e. a lot colder!) than usual, and partly because this is a design I’ve been wanting to try for a very long time now.

The First Watt F4 is a classic Nelson Pass/First Watt design with JFET inputs and MOS-FET outputs. However, as with the other FW amps there is a twist here, namely that the F4 has no voltage gain. That means it’s essentially a buffer than can provide a full 25W class A output. What’s the point of that you might ask? Well, one point is that it can help get a better gain structure and that it’s possible to use some sources (such as DACs) which have a very high output. There are various other applications in the F4 manual as well.

Some will have spotted that the F4 boards are from the diyaudio store. They are good quality and a well-proven design, so I decided not to bother doing my own.

The chassis is sort of the usual from Modushop, but then not quite anyway. Partly because the heatsinks are predrilled 4U types from diyaudio (which did cost a bit more, but saved me drilling and tapping nearly 30 M3 holes) – because they match the boards 100%, and partly because I have decided to do a bit of “hacking” to make a non-standard size chassis (teaser! 🙂 )

So, in addition to the chassis hacking, I am also thinking about which preamp to choose to provide the voltage gain for this and obviously there are plenty to choose from, so it should be possible to come up with an intriguing combination for you guys 😀

Soundwise I also have quite high expectations because of my past experience with the First Watt F5 design – which I still consider one of the best sounding amplifiers I have tried in my home system – but let’s see if the F4 delivers on that front as well when it’s ready 🙂

PeeCeeBees in the wild…

First of all, let me apologise for showing yet another half-finished board, but there’s a reason for that which I will get to later. Secondly, apologies as well for the stupid headline, but unfortunately this is the name of the design so I did not choose it 😀

The PeeCeeBee amplifier is as far as I can recall a version of the VSSA (Very Simple Symmetrical Amplifier) developed by diyaudio-user LazyCat and a precursor to his “FirstOne” semi-commercial design. The VSSA is (as the name sorta implies) a simple amplifier based on Lateral MOS-FETs which are excellent for audio and the PeeCeeBee circuit has built on the concept.

The PeeCeeBee design has gone through several iterations, but this week I received my boards from the diyaudio groupbuy of the v4 design from Shaan in India. The group buy boards are black (which would not have been my first choice because you can’t see the traces very well), but they are 2.4 mm thick(!) and excellent quality so I couldn’t really wait to start putting them together.

Now the reason for posting this now is that there is a second run group buy which runs until the end of the coming week, so if you missed the first round there is still a little time to secure your own boards 😀

Still short a few passive parts for the boards, but I have the LAT-FETs on hand, I have a suitable chassis on hand and probably a transformer as well. I’ve never built a LAT-FET amp before, so really looking forward to hearing this one “in action” in (hopefully) a few weeks when the last parts get here.

More Naim clones…

Yep, I know I should be working on the HackerNAP instead, but I was just in the mood for building something else and as I had another Naim clone kit lying around, here we are 🙂

This is a NAP140 clone (or one of many actually) from ebay. I bought a cheap kit thinking I could get away with just replacing a few caps as usual, but I actually ended up replacing most of the resistors as well after a couple of them tested out of tolerance – hmm…

Also, while the listing said the 2SC2922 output transistors would be genuine after checking them I’m fairly certain they are not – at least the screen print looks wrong. The PCB is also much flimsier than usual, so actually this is one cheap kit I wouldn’t recommend that you buy 😦

Anyway, I know a couple of places that have genuine Sankens at a reasonable cost, so with a few of those and the last few caps (already on my next Mouser-order) then we’ll see if this one powers up 🙂

HackerNAP/HackerCAP

One of my (numerous) neglected projects is a version of the “HackerNAP” Naim clone amplifier. Naim is one of those brands that have a very loyal following, and many of their original designs have been analysed extensively by DIY’ers looking for improvements. The HackerNAP is one of those derivatives and the NCC200 from Avondale Audio is another – ebay is awash with other (more or less accurate) versions as well by the way.

Part of the reason why this project hasn’t been top of the list is that did not like the original HackerCAP PSU boards, so with a small delay (of around three years…) I decided to do my own version instead 😀

To be honest this isn’t how I would normally have done a PSU board – if had designed from scratch I would have made a larger board, used two full bridges and a full ground plane – but as the chassis are already drilled for the original boards I kept the physical size as close to the original as I could.

While the board size isn’t 100% the same as the original HackerCAP, I’ve retained the option to configure the design for both “normal” PSU usage and also for CRCRC or CLCLC configurations.

As the PSU boards are now done and tested, I can hopefully manage to do the rest of the assembly in less than three years 😀

Another mains controller…

I’ve designed and built a few control boards for switching on mains (e.g. this and this), because it tends to be a thing that many of my projects need. Good (and good looking!) mains switches are hard to come by, especially for higher currents, so it makes sense to use a lower-voltage switch combined with a relay or an SSR for this duty. An obvious downside to the relay-based approach is that a standby voltage is needed to control the relay, but as described in a previous post there are now several types of switching AC-DC converters able to do that job very cheaply and reliably.

However, more often than not I have found that I prefer to keep the standby PSU separate and so this addition to the control-board portfolio was delberately made smaller and to fit my usual 2”x2” format to make it stackable with my softstart-board. For anything with a large transformer in it, this is a combination that is very useful.

Another addition is an external trigger input (isolated with an optocoupler) which I don’t often use to be honest, but which I could see some potential in anyway. To make this feature a bit more versatile I have opted for the “deluxe-version”, by feeding the optocupler from a constant-current source made from an LM317L. This should mean that it’s not just the usual “12V-trigger” input, but actually it would work with any voltage between app. 3-30V and draw less than 20mA from the triggering device.

“In flight” (or at least on the way) are boards for a matching standby PSU based on the Mean Well IRM power modules – when everything is here and tested I’ll publish some files and more pictures 🙂

Sunday morning chipamps…

It’s been some time since I did an ebay kit, but that doesn’t mean I have given up on them (in fact I bought plenty…) and a cheap kit is still a great thing to play with on a Sunday morning**

It’s a pair of power amps based on paralleled TDA7293 amplifier ICs in the correct “master/slave” configuration as per the data sheet (and this discussion on diyaudio). The TDA7293 and TDA7294 chips are among the few survivors of the “purge” of audiophile components and they should still be available. Unlike the LM38xx-series and its siblings, the TDAs have MOS-FET output stages which means they can run in parallel without resistors to limit current sharing between outputs. The parallel arrangement allows for more current into low-impedance loads, but as the TDA7293 will work on up to +/-50V rails having two ICs also makes for a fairly serious effective power output.

These kits are seriously cheap and although I’ve tried to use most of the components that came with the kit, some parts have been replaced for cosmetic reasons (because that matters to me, sorry!). Even with component replacements though, these kits are so cheap that there is no real excuse for not trying them – even if you don’t need new amplifiers at all 😉

No real sound impressions yet, but I know these chips can sound really good so I am looking forward to seeing how much of their potential can be unlocked for the same price as a takeaway meal 😉

**Yes I know it’s not Sunday today, but as Whit Monday is a holiday in Denmark it felt like Sunday morning 😀

Mains line filter

An offshoot of my work on the STEPS circuit was that I started researching mains filters a bit. I kept it simple on the STEPS circuit, but decided to do a proper separate line filter PCB as well.

I’ve included something that is missing on the STEPS board, namely a differential-mode filter with an earth connection to serve as the midpoint. I’ve also put a fuse on this board as I often struggle a bit to find suitable space for a mains fuse in my builds – and obviously the fuse isn’t something that should ever be left out of a mains-powered circuit!

However, the STEPS wasn’t actually the only inspiration here: While looking for suitable common-mode chokes I discovered the Murata PLY10-series which is a hybrid containing a common-mode and a differential-mode choke winding in one part. This makes a more compact filter possible which obviously is an advantage (even if it has low-ish current capability and separate chokes are obviously more effective/efficient). The current capability of the PLY10 makes this filter suitable for preamps, headamps and similar circuits only though.

Pictures of the prototype below. To be honest, I am not sure if this is significantly better (or worse) than a normal filtered IEC socket, but it is at least a bit more versatile – and it was fun to make 🙂