An early Christmas present…

I generally make a point of buying myself a Christmas present every year and this year it came a little early 🙂 While I was looking for the Hypex Ncore module I wrote about a couple of weeks ago, a stereo ICEpower700AS2 popped up as well – so I bought that 🙂 This is going to be a “little brother” to my 700ASC-monoblocks but whereas the monoblocks (which I also hope to finish over this Xmas break) have added buffers and dual-input switching, this is just going to be made into a simple and no-frills power amp.

In contrast to the Ncore module the ICEpower amp has onboard heatsinks so mounting in a small(ish) enclosure should be fine – at least for home duties. As I already had a basic layout for both a bottom plate and a back panel, drawing them up was quite easy and the back panel order is already placed. The support PCB I did for the monos also works here which should mean that once I receive the back panel there should hopefully be very few blockers to wiring up the amp and getting it tested within the next weeks.

I have seen one comparison of the Ncore and the ICEpower module (although I can’t find the link at the moment) with the Ncore coming away as the clear winner, but I am looking forward to seeing if my own conclusions match that 🙂

(apologies for the poorly lit pictures, but winter in Scandinavia means no daylight when I get home from work :D)

Advertisements

Encore?

A quiet last few weeks here – at least on the surface. Two reasons for that really: 1) With an Xmas-break looming on the horizon the pace at work is picking up a bit and 2) for quite a lot of projects I am in the annoying phase where lots of important work is done, but it doesn’t really look like you are getting closer to a finished product and so it’s not really worth showing here. If nothing else though, it’s nice to have a good pipeline for next year 😉

However, one thing there is always time for is to buy new projects for the shelves 😀 As regular readers will know I have made lots of ICEpower-based projects, but practically nothing with the various Hypex-modules. However, recently one of the new Ncore NC502MP modules came up on ebay and so I pounced on that. The module looks very nice but I need to test it for a while to check the sound (waiting for proper cables at the moment) and then I’ll decide on a suitable enclosure for it. The original goal was to built a custom high-power integrated amp, but I may end up going in a different direction and do a pure power amp instead. One deciding factor will definitely be whether mounting the module on a simple aluminium bottom plate proves to be enough heat sinking, because if the module has to be on a “real” heat sink, then all my current enclosure ideas are definitely out the window!

Soundwise, I still expect that the benchmark for the Ncore to beat (at least in class D) is going to be my trusty 125ASX-based stereo amp and the 700ASC-monos (which incidentally are also among the designs that are I am currently inching closer to completion…)

In search of synergy…

Slightly off-topic post, but I have written a few times about how I think that system-matching is much more important than any “absolute” sound quality, at least as far as enjoying the music is concerned. Well, today was another reminder that I still think this is the case 🙂

A couple of months ago I got new speakers, trading my old (and much-loved) standmount Sonus Fabers for some floor standing Scansonics that offered a bit more low-end slam. I was quite happy with the trade from the beginning and I have absolutely no regrets, but after a time the inevitable restlessness sets in and you start thinking about change (at least I do…). I’ve been running the Scansonics with a simple 125ASX amp on my Harman/Kardon preamp, but just to try it I dug out another ICEpower-amp from my collection, this time based on the older 200ASC-modules.

Although I would definitely still class the 125ASX as the better amp overall, the Scansonics (which are just a little bit bright) immediately benefitted from the more “closed-in” presentation style of the 200ASC, so as usual after initially listening to half a track I started to go through my normal playlist of tracks I know well and just enjoyed listening to some music that I would normally say I know back-to-front already.

To be fair I am honestly not surprised at this, because I saw the same change when I switched from the even older Elac speakers that much preferred the warmer sound of a 50ASX amp whereas the Sonus Fabers really came to life with the more lively presentation of the 125ASX. However, I still think that it’s nice to be reminded once again what really matters when putting a well-rounded system together and of course experimentation is always fun (although it can sometimes be very expensive as well…)

Inching forward…

Another long(ish) break from posting – this time mostly courtesy of some extremely nice late-spring weather and a couple of house-related DIY-projects. Just about the only thing that has moved forward (at least enough to notice) are my ICEpower 700ASC-based mono blocks (which I discussed here). A couple of weeks ago I got the mounting plates I designed for the modules + supporting circuitry which meant I could drill the chassis and start putting some mechanicals together at last.

Some of you may have guessed that this is where my BalBUF design is supposed to end up, but there was a piece missing. A matching power supply to drop the 700ASC’s 15V aux power supply to something more manageable for the OPA1632 (which gets very hot in operation). Because I was running out of space in the enclosure I wanted to use, a key design criteria was that the PSU should be “stackable” with the BalBUF board.

I quickly found what looks like the perfect device for this use – the TPS7A39 from TI – which is a dual pos/neg low-noise regulator with the right specs. Unfortunately, it is also only available in a 3×3 mm leadless package and as my odds of hand-soldering that are pretty much = 0 I dropped that pretty quickly. Instead I went for a bog-standard LM3x7-based design, but managed to squeeze it down to size because of the modest heat sinking requirements.

In a nod to “reusability”, which is something I always aim for where possible, the PSU board includes SMD resistors on the bottom in front of the caps, which means it can also be used with the unregulated supplies on the other ASX-boards such as the 50ASX and 125ASX. This means that you can use the BalBUF with any ASX-module without a separate offboard supply for the low-voltage circuitry, and because the BalBUF and the PSU stack on top of each other it should be very compact. Assuming everything works as expected with the 700ASC when I test it, I’m pretty sure that means I’ve just figured out what to do with my last remaining pair of 50ASX’es 😀

The sketch for the rear panels is also pretty much done, but given that Schaeffer/FPX panel work is getting more and more expensive I have decided not to order the rear panels “blind”, i.e. before I have tested that the monos work electrically. If this weather continues, that might be a while though 😀

Slow-turning wheels….

I’ve been complaining about my pile of unfinished projects for the last few posts, but now I am at least at a stage where I can start to do something about it. The first step was of course to add cupboards where I can hide the mess ( 😃), but obviously the only really viable solution is start finishing up some of these projects, so I will try to get started on that during the Easter break – fingers crossed!.

Meanwhile, there are also other stuff to be worked on. One of the projects I did start warming up to has been my ICEpower700ASC-based amplifiers where I have managed to decide on an overall architecture. It’s going to be monoblock chassis with two switched inputs, provision for some form of buffering and an external trigger option. The ASC-board has a whole host of useful features and connections which it would be a shame not to exploit, but in order to avoid too many air wires I decided that a small breakout-board was in order. This will put the control signals and the aux power on more easily-accessible headers. Prototypes have been ordered! 🙂

Buffering isn’t 100% decided yet but since the 700ASC-module has a balanced input, the requirement was really for a fully-balanced buffer – ideally with Bal/SE conversion built-in. The obvious choice for that (and one which I haven’t really used before) is a fully-differential amplifier (FDA) such as the OPA1632. I’ve previously looked at this IC and done some sample board layouts, but nothing ever really came of it. This time, I’ve started from the schematic of AMBs excellent “Alpha24” design and started hacking it to suit my usage. The starting point for the board layout is one of my old ones, but significantly cleaned up compared to those previous experiments so hopefully everything works as it should (the OPA1632 is fairly high-speed and so board layout is a bit critical to get good performance and low noise).

I’ve also made rough mechanical sketches which are only really waiting for the boards etc. to become available so that the dimensions and placement of the various holes can be 100% finalised – paper mockups are a great way to do the initial prototyping though. The turnaround time for board deliveries from China seem to have slowed down a bit lately, but since all the Danish public holidays are basically in April and May there should be a chance to make some more progress when the boards do show 😀

New toys…

As per my last post I am in the process of moving (a lot of) DIY stuff out of my apartment, so what I should definitely not do is buy more things. However, sometimes an offer comes up that you just have to jump on 🙂

This time it was a set of unused ICEpower 700ASC-modules which is one of the ICEpower models I have not yet tried. They came up on a local classified page last week where I just spotted them by accident. The price was reasonable and since this is the ASC-version of the 700 with a few extra useful features then they should be quite versatile in use.

For now though, they are going on the shelf while I look for a suitable project for them (and move them to the new house 😀 ).

An ICEpower 50ASX amp – the easy way…

Some weeks ago a reader on the blog asked me some questions about various pre-made options for putting together a simple amplifier based on the ICEpower 50ASX2 module.

One of the options mentioned was to buy a case-kit for the module from Ghent Audio in China. I’ve seen pictures of these cases before and not only do they look quite good, they also come pre-drilled and silkscreened which for most DIY’ers is the hardest part of building stuff. I answered the questions as best I could without any hands-on experience to offer, but as I had an older black 50ASX-module left over I decided afterwards to get a case for myself and try them out.

After the usual waiting on shipping (which wasn’t actually that bad – app. 2.5 weeks), the case kit arrived. Everything is included, a power switch assembly, AC inlet, terminals etc and it seems to be decent quality all round. I didn’t buy the full cable kit, which would have made it even easier to assemble, but still it’s not too bad.

Putting together the basic kit with the module, feet, switch etc. ready for cabling only took around half an hour or so. If you look at the pictures I’ve made a few “adjustments” to the kit by using stainless screws and feet (the kit comes with black screws and matte silver feet), but otherwise it is as delivered and of course using the original parts would also have been just fine. The terminals are decent quality, but not the best I’ve seen. Also, the terminal holes are drilled too large (presumably to accommodate changing suppliers) which is slightly annoying but by no means a deal-breaker.

A bit more digging in the parts drawers revealed some suitable pre-made cables for signal and speakers – and a problem: my stock of JST connectors for the power connections has run out (or run away :-))

So yes, in conclusion this is definitely an easy way to build an amplifier (just as long as you ensure you get all the parts before you start 😉

50ASX BTL conversion (part 2)…

So, I’ve done some more testing on my BTL-converted 50ASX-modules…

As you can see, I’ve used a slightly less improvised test setup compared to last time (it looks worse than it is…). While I wouldn’t call what I have done “extensive testing” by any means, my gut feeling is that this works 🙂 It also ties in well with how the other ASX-modules work and some “insider knowledge” from years ago that I can still recall 🙂

Note and disclaimer: I would very much appreciate if someone else tried this to verify and maybe do more testing, however I will accept no responsibility for damage to property, people or pets (or anything else for that matter) if you find a problem – this is DIY after all 😀

You can of course hack this conversion anyway you like, but I opted for removing the old jumper altogether and soldering in a new one. If you do that, be advised that the ASX-board is four layers and soldered with lead-free solder, so it will take a bit more heat to reflow the joints than I am at least used to. If you use a soldering iron that is too small, you’ll just heat up the board and possibly damage it.

My suggested approach would be to cut the jumper on the top side of the board. Heat the solder joint from the bottom and pull out the jumper wire with small pliers. Then clean the remaining solder off the board with desoldering braid or (better yet) a vacuum desoldering station if you have access to one. Then solder in the new jumper in the BTL position. There isn’t much space to work on and you should be careful not to damage any of the (sometimes annoyingly) small SMD-components on either side of the board. Once the new jumper is in place, follow the wiring diagram for the BTL-version in the 50ASX data sheet/designer’s manual and you should be good to go.

Bear in mind that what you end up with isn’t a “real” balanced (= differential) amplifier, but two SE amps referenced to ground and driven with opposite phase input signals to produced a bridged output. As such, the input ground is still required in order for the amp to produce a correct signal on the output. I’ve found a good sketch here for LM3886 modules that should show the correct input wiring. Output on the ASX is taken from the P104 connector, so ignore what the sketch shows here (and of course the DC wiring is irrelevant as well).

If you do try this, let me know how you get on 😀

PS: Yeah and the picture is still crap – but don’t worry, the light should be better from around April onwards 😉

50asxbtltest-1

ICEpower 50ASX – SE to BTL conversion

I’ve recieved a few questions (and participated in a diyaudio discussion thread) about converting ICEpower 50ASX2 SE modules (which are fairly easy to get), into 50ASX BTL modules (which aren’t). I was pretty sure this could be done without component substitutions by simply desoldering the W401 jumper and resoldering it into the W400 position (marked BTL on the bottom of the board) but as I had no modules left, I couldn’t try it. Now I’ve managed to get my hands on some more modules and I’ve actually tried converting one of them and the good news are – I think it works!

I haven’t actually measured anything (not sure what to measure to be honest) but I get clean audio out on the BTL speaker connector (P104) and a very loud buzzing noise on the other output, so at least it isn’t running stereo anymore. No guarantees on anything yet though, but it’s definitely promising.

Oh, and don’t laugh at my improvised test setup, it is necessary because I don’t have a proper balanced source in the house at the moment and I couldn’t be bothered to crimp new cables just for testing 🙂 Incidentally, don’t laugh at the poor picture either – winter in Scandinavia means the days are so short that I can only take pictures in daylight during the weekend…

Next up is to convert a second module, build some better cables and try it “for real” in a stereo setup – hopefully this weekend 🙂

50asxbtl-1

Project files: ICEpower integrated amp board

What is it?
The project files for the “all-in-one” (nearly…) PCB for making integrated ICEpower amps shown in the previous post.

How big are the boards?
The board measures 2.65″ x 3.15″ (app. 67 x 80 mm.).

What is the status of the boards?
The board is version 2.1. As mentioned, it’s an old design that I have revised and updated to give it the 2.x version number. I’ve built my prototype on a v2.0 board and made some minor tweaks to that before publishing.
The changes in v2.1. are mostly mechanical (too little space for the input connectors etc.) and then minor touch-ups to the silk screen.

Does it use any special/expensive/hard-to-find parts?
No. The overall circuit is quite simple and only a few parts require a bit of attention.

  • The relays are standard mid-sized “2 form C” contact types. If you’re buying from scratch I’d recommend the Takamisawa RY-12W type, but there are app. 1 million equivalents with similar specs and footprint, so you may be able to get good surplus deals as well :). The coil voltage must be 12V.
  • The voltage regulators are standard 7812/7912 types but as they are mounted very close together I recommend the fully-insulated versions. I prefer the ones made by NJR as opposed to ST because the ST-ones seem to behave a bit strangely sometimes (and yes, I might be imagining this…).
  • See BoM-file for description of other parts and values.

Anything else I need to know?
A few things:

  • The on-board parts draw no current from the negative PSU rail. If you’re not using any external circuitry you can omit the negative rail (regulator etc.). If you build it anyway and get strange results, note that some regulators do not like a “no-load” condition and will give an weird unregulated output if not loaded. You can solder a 1-3k resistor on the bottom if you want for added peace of mind.
  • ASP/ASC-usage: It’s possible to use the board with ICEpower ASC and ASP modules. As these include a regulated +/- 12V AUX supply, you should jumper the regulators and the input resistors. The capacitors and remaining components can be left in.
  • Mute-header: The Mute-header simply brings the two pins required for the module’s mute or standby pins to work to a header at the from of the board to simplify wiring. Refer to the datasheet for the respective modules for details on how to use this, but in general you can switch using a mechanical switch.
  • Heat sinking: There is no heat sinking of the regulators as standard. With a simple preamp and no additional load this should not be necessary, but if you want to draw more power then use a small bit of metal as the heat sink. There is not much space in either direction, so using insulated regulators will once again be an advantage.
  • If you prefer a manual input switch, the board is just about ready and will be presented as part of another project post in a few weeks 🙂

Downloads:
Download design files here

Related information:
Please read the FAQs in the original post as well. The picture below shows my “in progress” prototype amp with the Minipre and a 50ASX-module and gives an idea of the expected layout.

Note: Always read the “intro post” for additional important information about my designs.

ice-int-wip