Minipre in a box…

A while ago I presented my “MiniPre”-project of a simple op-amp based preamplifier. Now I’ve had occasion to put it into use as a small standalone preamp/active monitor controller.

The design is very simple, so not much to be added there (whatever you need is probably already in the original post), but it’s basically a standard dual op-amp in non-inverting configuration.

The power supply will be in the form of a small DC-DC converter (a continuation of my previous experiments) so that I can feed the box from a single 5V supply and keep the case size down. Because of this I’ve managed to cram everything into the smallest available hifi2000 case, so it will fit nicely on a desk 🙂

The advantage of this simple design is the the selection of opamp tends to have a noticeable influence on the sound signature, so this is one place where there is room to experiment whether different options have better synergy than others.

Advertisements

Project files: Universal Mini-preamp

A few weeks ago a reader was commenting on simple buffers/preamps and also asked about ebay-kits to use since I haven’t posted anything with a volume control yet. That got me searching to see what was actually out there and very quickly came the realisation – “I can do this better” 😀 Not sure if I did, but I at least tried 🙂

What is it?
A very simple opamp-based buffer/pre with an onboard volume control that can be used as a “buffered volume control” with a power amplifier module, a real preamp with or without gain or even a “CMoy”-style headphone amp. The board has space for a DIP-8 dual opamp, polypropylene input caps and a full-size Alps volume control and still manages to be very compact. I’m showing the board now as I already have a couple of applications for it in the pipeline myself which you will see later 🙂

How big are the boards?
2″x2″ (app. 51×51 mm) – a theslowdiyer standard size (TM) 😉

What is the status of the boards?
The board file is v1.0. I’ve built a prototype and everything seems to be fine.

Does it use any special/expensive/hard-to-find parts?
None, really. You can get what you need from Mouser/Reichelt and similar places and most of the component values aren’t that critical anyway.

Anything else I need to know?

  • The opamp should be a dual-type with standard pinout. My recommendations would be either the LME49720 (sadly discontinued in DIP) or the OPA2107 (still available but fairly expensive), but there are loads of other options. The board layout should be suitable for using adapters as well (for DIP/SO-8 singles or SO-8 duals) and if you want to go all-out there’s even a discrete option from Burson that should fit as well.
  • The only surface mount components are the optional (but recommended) 1206 bandwidth-limiting caps on the bottom – otherwise it’s through-hole all the way.
  • The PCB should be happy with just about any (regulated) dual power source – linear PSU, switching PSU or even a pair of 9V batteries.

Downloads:
Download design files here

Related information:
Even though this is a basic opamp circuit and I can just about draw the schematic and recite the parts values from memory, I went back to look at it once more to try and read up on the theory behind. If you aren’t very familiar with the basic schematic already I can absolutely recommend the old but still excellent articles from Headwize/Head-fi member Tangent here and here. Tangent’s pages also have a ton of other useful information and although the site isn’t updated any more (and it’s quite old) there’s still plenty of good stuff even for inexperienced diy’ers.

If you are more technically inclined then probably the best resource is the “Opamp Applications Handbook” from Analog Devices and edited by Walt Jung.

Note: Always read the “intro post” for additional important information about my designs.

A cheap fantasy….

Yes, it’s a not a very good joke – sorry! 🙂

Haven’t done one of these “cheap kits” for a while, but I am possibly getting a bit more picky. However, this particular board was around 20 USD for a kit (excl. tubes) and so the risk was manageable. It’s supposedly a clone of the famous Matisse “Fantasy” preamp which uses 5670 tubes. I wouldn’t know to be honest, but I have been intrigued by low(ish)-voltage tube circuits for a long time and so I took the plunge.

I’ve replaced some components (mainly the capacitors and the volume pot), but there was still plenty of kit parts left to salvage to make it worthwhile (tube sockets, semiconductors, heat sinks etc.) over buying just a blank PCB. The caps probably would have worked just fine, so that replacement was mainly cosmetic. One notably exception was the 80V rated electrolytic in a part of the circuit that sees rectified 55-60VAC – a little too close to the limit for my liking.

The tubes ‘ve bought from an Eastern European seller and they are 6n3p-E which is supposedly a long-life Russian version of the 5670. The circuit runs off 50-60VAC, so it’s what I would call a “medium-voltage” project. As usual, the instructions that came with the kit were poor (especially if you can’t read Chinese 😉 ) but with a bit of care it wasn’t a problem to put together.

Sound quality? Well, as usual with these projects I’ve only really done basic bench testing for now and so the only thing I can really confirm is that it produces sound. One of the things I did notice though was that it seems to be a well-behaved circuit. By that I mean no big turn-on/turn-off transients, no excessive noise and no microphonics from the tubes. I might just have to splurge for a proper transformer and case for this anyway…

The Great B1-binge…

I’m obviously a fan of the Pass B1 design but the last couple of weeks have seen the arrival of no less than three more B1s which is a bit much, even by my standards… 😀

Not sure how this really came about, but it must be something like this: A while ago a saw an ad on a forum for a B1 clone board (the original type which is pretty much the same as the original pasty board). It was quite cheap and so I bought it. Since I now use both analog and digital I thought I could build one with two inputs (because my previous one only has a single input).

Shortly after I received this board and had started populating it, I realised I already had a partially-assembled board of another clone design that was basically only missing the input and output caps in order to be ready (yeah I know, I should keep a list or something… 😀 ). Because of the size of the onboard electrolytic caps, the board I had would fit nicely in a 40mm high enclosure, whereas the new board would require a bit more internal height, i.e. an 80mm chassis.

More or less the only thing I don’t like about these B1 boards is the fact that you have to “air-wire” the input switch, which means criss-crossing the inside of the chassis with long wires carrying the input signals. The obvious solution is to use a relay, so I went ahead and made a couple of small adapter boards to accomplish this. With a 24V relay all that is needed to switch the relay is the supply voltage to the B1 so it makes for very simple connections.

The last design was prompted by a reader email asking if I knew of a B1 with more than 2 inputs. The answer was “no”, but I then decided to build a source selector to match my own B1-board. The selector is a simple relay-based type with four inputs but it should work just fine. As I had some PCB mounted RCAs I made a board version for those, but also a more universal one without onboard connectors (not shown).

I’ve tried to put all of these in fairly nice cases, but it’ll still be a bit of a challenge to decide which one to keep as my “personal reference” 🙂

Project files: Amplifier PSUs

Digging in the back catalogue a bit again here.…and found some of my power supply boards that I haven’t published yet 🙂

What is it?
Power supplies for amplifiers, d’oh! 😀 Two basic variants, namely a “class AB” type and a “class A” type. The “class A” type is intended to be used in a CxC configuration with resistors onboard for CRC and pads for a choke to make it CLC. The “class AB” one is a standard unregulated design for class AB or D amplifiers that allows using both small 16/18mm radial capacitors and large snap-in types (up to 35mm). Here there are two versions, one for 2 off 35mm caps (or 8 smaller caps) per rail and one for 3/12.

The picture below is of the large class AB board. It’s actually the board from the previous post that has had some caps mounted in the mean time 🙂

How big are the boards?
The AB board measures 3.55” x 3.9” (app. 90 x 99 mm.) for the standard version and 3.05” x 6.1” (app. 77 x 155 mm.) for the XL version. The CRC board measures 3.15” x 3.95” (app. 80 x 100 mm).

What is the status of the boards?
Both of the “class AB” boards are in v1.0. The “class A” board is in v1.1 as I made a couple of tweaks (including the pads for off board R/L) to my original version. The original v1.0 is the board that I use in my “Green Monstre” amps.

Does it use any special/expensive/hard-to-find parts?
Nothing, really. You can go overboard with expensive capacitors if you want, but even if you have the money to put NOS Black Gates in your power supplies I’d still suggest you spend them elsewhere in the circuit 😀

Anything else I need to know?

  • Unless you are building very small amplifiers I’d recommend that the CRC and the small AB boards are used in dual-mono configurations with one PSU per amplifier channel. The large AB board can be shared across channels for a medium power class AB or D amplifier (meaning anything with a rail voltage up to around 55V and 63V caps).
  • The boards all include LEDs that indicate power and bleed the capacitors when no load is connected (albeit very slowly). The corresponding resistor footprints should be large enough to allow fairly high LED currents but remember to calculate the power dissipation.
  • The CRC board has space for two resistors in parallel per rail, either axial types (up to around 3-5W will fit) or MPC7x radial types up to 5W.
  • The rectifiers are GBU-types which are available from Mouser up to a 25A rating.
  • Input connections for the Class AB “XL” board are via FAST-ON tabs. All other input/output connections are via 5mm spacing screw terminals.
  • The capacitors on the class A-board can be up to 30mm in diameter. Since class A amps tend to get hot, I’d recommend 105 degree types here. As mentioned above, the class AB boards use either snap-in caps up to 35mm diameter or 16/18mm  radial caps with 7.5mm pin spacing.
  • Needless to say, all capacitors should be rated appropriately for your amplifier’s rail voltage.

     

Downloads:
Download design files here

Related information:
These are very simple circuits, but there’s some god background on PSU design for amplifiers over on Rod Elliot’s pages (under “power”)

Note: Always read the “intro post” for additional important information about my designs.

Project files: A PGA231x Volume Control

What is it?
A “digital” volume control based on the well-known PGA2310/PGA2311 ICs from TI. These aren’t actually digital, but just digitally-controlled resistor attenuators integrated on an IC – which doesn’t really matter anyway.

As is often the case, there are two board versions: One is a “normal” stereo version with a single PGA chip onboard, the other is a balanced/multichannel version that has two chips onboard (for balanced setups) and the possibility to daisy-chain more boards (for multi-channel systems). The boards are intended to be controlled from an Arduino or a similar microcontroller via an SPI-interface. I haven’t included any software in the download file, but there should be plenty of examples online that shows how to do this integration (especially for the Arduino).

As even the not so keen-eyed observer will notice, this isn’t a new layout. I recently realised I didn’t post these before and as the project they were meant for died somewhere along the way I am not sure I’ll ever pick these up again (at least not within the foreseeable future).

Note: I had some minor noise-issues with the boards. As I never got beyond bench-testing, the noise could be from any number of sources other than the layout (my shoddy test wiring, poor PSU, the poor USB supply that I used for the arduino etc.). This means that although the PCB layout is made according to (what I believe are) the TI recommendations for the PGA231x, I cannot guarantee that the finished board will perform 100% flawlessly without tweaks.

How big are the boards?
The stereo board measures 2.525” x 1.6” (app. 64 x 41 mm.)
The balanced board measures 2.525” x 2.65” (app. 64 x 67 mm.)

What is the status of the boards?
The boards are v1.0, meaning finished and technically working as I expected. Please do note the caveat above around noise though.

Does it use any special/expensive/hard-to-find parts?
None, really.

Anything else I need to know?

  • There are plenty of examples online for interfacing the PGA ICs with Arduino and other microcontrollers – do a search of diyaudio and the Arduino forums for a start.
  • The PGA chip wants to be driven from a low-impedance load and the input buffer sees to that – use whatever dual opamp you prefer here. If you don’t have a favourite already, I’d recommend the LME49720/LM4562 as long as they are available:) The PGA has a buffer of its own on the output and it is spec’ed to drive loads down to 600 ohms which should mean that all common configurations are catered for.

Downloads:
Download design files here

EDIT 23/4-2017: In response to the reader comments below, here is a basic BoM for the single board. As the dual-board is basically two sections of the same circuit, you should be able to work out the BoM for that yourself 🙂

Related information:
Note: Always read the “intro post” for additional important information about my designs.

Please also refer to the data sheet for the PGA2310 for information about controlling the chip etc.

Project files: GP-PSUs v2

What is it?
Two boards for general-purpose LM317/LM337 power supplies with two rails, useable for many low-power applications (preamps, buffers, filters etc.). There are two versions, one where the +/- voltage is derived from a single AC-voltage via a voltage-doubler and one where it comes from a traditional dual-AC, two-bridge rectifier circuit.
These boards are effectively an update on the old GP-PSUs and they are based on the triple-PSUs I posted a while ago. In fact they are just the three-rail designs with the third rail removed 😀

How big are the boards?
Both board versions measure 3.925″ x 1.8″ (app. 100 x 46 mm.) and they are mechanically interchangeable.

What is the status of the boards?
Both boards are in v1.0. I haven’t actually prototyped these in this format yet, but since they are the same as the three-rail version (which I have tested) I don’t mind publishing them.

Does it use any special/expensive/hard-to-find parts?
Nothing, really. As always with these circuits, you can use standard LM317/337 regulators or splash out on more expensive (low-dropout) types like the LT/LM/LD108x-series. My experiences with the latter parts aren’t the greatest though (instability), so unless your applications require the low-drop capability I’d just as well stick to standard 317/337-types from a reputable source. If your application requires a higher performance PSU than this, you are probably better off looking at entirely different circuits and regulators anyway.

Anything else I need to know?
Yes, pretty much a repeat of what was mentioned for the three-rail circuits:

  • The diameter of the main filter capacitors is 18mm, but the dual footprint means that anything between 10mm and 18mm should be fine.
  • The DIP rectifier bridges exist in versions up to 2A rated current although anything more than 1A can be a bit difficult to find. Realistically though, if you plan on drawing more than 1A from either supply the SK104-type heat sinks are probably going to be a limiting factor anyway.
  • Mounting the regulators and heat sinks is a bit of a faff because there is not much space, especially if the heat sinks are 38mm or taller. My suggestion (as always) is something like this:
    • 1) Loosely assemble the regulator, the isolation components and the heatsink.
    • 2) Mount the combination on the PCB and solder the heatsink in place.
    • 3) Tighten the screw holding the regulator to the heatsink.
    • 4) Solder the regulator in place.

Downloads:
Download design files here

Related information:
Even though the regulators used here are generic types made by many manufacturers, there can be small differences in recommended parts values etc. I suggest you always consult the regulator data sheets from the specific manufacturer.

Note: Always read the “intro post” for additional important information about my designs.

Project files: Universal Triple-PSUs

What is it?
Two boards for general-purpose LM317/LM337 power supplies with three rails, useable for many low-power applications where both a +/- supply and an auxiliary voltage are needed. Examples include analog amplifier + digital/logic circuitry, microphone preamplifier + phantom voltage etc.
There are two versions, one where the +/- voltage is derived from a single AC-voltage via a doubler and one where it comes from a traditional two-bridge rectifier circuit. This design is virtually a copy of my GP-PSUs. I made some minor enhancements and added the extra rail, but it is the same basic design.

How big are the boards?
Both board versions measure 3.925″ x 2.6″ (app. 100 x 66 mm.) and they are mechanically interchangeable.

What is the status of the boards?
The “standard” board is in v1.0 and works fine. The voltage-doubled board is in v1.1 and also works fine. The two versions are completely identical except for the diode/bridge arrangement on the +/- supply. The difference in version numbers came because I originally prototyped a different (smaller) layout for the voltage-doubled version. After making the “standard” version that requires a bit more space for the rectifier bridges, I decided it was smarter if they were both the same size and then changed the layout of the voltage-doubled board to match.

Does it use any special/expensive/hard-to-find parts?
Nothing, really. As always with these circuits, you can use standard LM317/337 regulators or splash out on more expensive (low-dropout) types like the LT/LM/LD108x-series. My experiences with the latter parts aren’t the greatest though (instability), so unless your applications require the low-drop capability I’d just as well stick to standard 317/337-types from a reputable source. If your application requires higher performance than this, you are probably better off looking at entirely different circuits and regulators.

Anything else I need to know?

  • There is a jumper on the boards that links the ground on the AUX-voltage to the midpoint (0V) of the +/- supply. This is optional and probably not required for most applications but can be used for e.g. linking analog and digital ground in mixed-signal circuits.
  • The diameter of the main filter capacitors is 16mm on the AUX supply and 18mm on the main supply.
  • The DIP rectifier bridges exist in versions up to 2A rated current although anything more than 1A can be a bit difficult to find. Realistically though, if you plan on drawing more than 1A from either supply the SK104-type heat sinks are probably going to be a limiting factor anyway.
  • Mounting the regulators and heat sinks is a bit of a faff because there is not much space, especially if the heat sinks are 38mm or taller. My suggestion (as always) is something like this:
    1) Loosely assemble the regulator, the isolation components and the heatsink.
    2) Mount the combination on the PCB and solder the heatsink in place.
    3) Tighten the screw holding the regulator to the heatsink.
    4) Solder the regulator in place.

Downloads:
Download design files here

Related information:
Even though the regulators used here are generic types made by many manufacturers, there can be small differences in recommended parts values etc. I suggest you always consult the regulator data sheets from the specific manufacturer.

Note: Always read the “intro post” for additional important information about my designs.

Project files: B1 buffer/preamp

What is it?
Project files for my miniature version of Nelson Pass’ B1 buffer/preamp (shown here). I was looking through the “back catalogue” my of designs and decided that this has been sitting around for long enough to release 🙂

How big are the boards?
The board measures 3.55″ x 2.825″ (app. 90 x 72 mm.)

What is the status of the boards?
This board is in version 1.1 – tested, working and with a few minor touch-ups afterwards 🙂

Does it use any special/expensive/hard-to-find parts?
Well…

  •  The 2SK170 JFETS are obsolete and can be difficult to get (the real ones at least – getting something that is marked “SK170” isn’t hard at all…). There are a few “close enough” substitutes (such as 2SK369, 2SK117, 2SK246 and possibly a few more) which aren’t completely unobtanium yet. Do a google search if you are not sure, make sure to get BL-grades and beware that not all of these have the same pin connections.
  • The input and output caps should be MKP-types (polypropylene). The “square” footprints correspond to normal types from Wima, Evox/Rifa and many others.
  • The 1 ohm resistor in the power supply is meant to be a 5W MPC-71 type. These can be a bit hard to find – ebay and Aliexpress seem to be the best options (some risk of fakes as usual) – but it is also possible to fit a normal 3-5W type instead.

Anything else I need to know?

  • The JFETs should be matched for Idss for best performance. Plenty of guides available for that if you are unable to buy pre-matched pairs, and my JFETmatcher can be used as well.
  • I have used smaller PSU capacitors on the board than Nelson did in the original article, but you should still be able to get away with both regulated and unregulated power supplies. Plenty of advice out there for that as well – as long as you stay between 18 and 24V more or less everything should work.

Downloads:
Download design files here

Related information:
Tons on information out there on the B1 and derivates, but the most obvious place to start is (obviously…) Nelson’s original article.

Note: Always read the “intro post” for additional important information about my designs.

Woodface…

Yes, I know it’s the title of a classic album from Australian group Crowded House but it is also an occasionally very popular way of finishing hifi products 😀

European (or at least Scandinavian) readers may recall the now-defunct Danish “Holfi” brand from a decade or so ago. Here, thick cherrywood fronts were the norm and as usual with these things, that made the opinion of the brand more based on looks and perception than on sound quality (comments along the lines of “I don’t want something I have to paint every year to keep it from rotting” were frequent…).

However, wood also has a number of benefits, mainly that it is easier than metal to work with for most average diy’ers, and so when I stumbled upon some suitable wooden panels I started planning to give it a go as well. The wood is an unknown “exotic” (for a Scandinavian at least) species that I purchased in Japan last year. The boards are cut to 5mm by 50mm dimensions that are perfect for front panels for Modushop cases and that is honestly why I bought them**.

What am I doing with them? Good question and I am not quite ready to show that yet, but it will be a small pre- and power amp combination (because I definitely need more of those – groan! :D)

**Sidenote: I am sure many of the readers here recognise the feeling of looking at something and realising that it can be used for an audio project – if that rings a bell, I can only warn you against going to Tokyu Hands (especially their main branches in Shibuya and Shinjuku) and visiting the DIY-supplies section 😀

woodface-1